Section 1.2 Finding Limits Graphically and Numerically

Informal definition of limit: If f(x) become arbitrarily close to a single number *L* as *x* approaches *c* from either side, the **limit** of f(x) as *x* approaches *c* is *L*.

 $\lim_{x \to c} f(x) = L.$

The limit is written as

Complete the tables and use the result to estimate the limits. Use a graphing utility to graph the functions and confirm your results. **Ex.1**

 $\lim_{x \to 2} \frac{x-2}{x^2-4}$

x	1.9	1.99	1.999	2.001	2.01	2.1
f(x)						

Ex.2

 $\lim_{x \to -5} \frac{\sqrt{4-x}-3}{x+5}$

x	-5.1	-5.01	-5.001	-4.999	-4.99	-4.9
f(x)						

Ex.3

 $\lim_{x \to 0} \frac{\sin x}{x}$

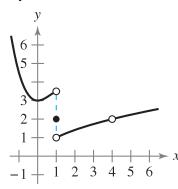
x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						

- - - 1

Common Types of Behavior Associated with Nonexistence of a Limit

- 1. f(x) approaches a different number from the right side of *c* than it approaches from the left side.
- **2.** f(x) increases or decreases without bound as x approaches c.
- 3. f(x) oscillates between two fixed values as x approaches c.

Use the graph of f to find the following limits and function values. If the limit does not exist, explain why.



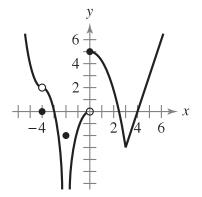
Ex.4 (a) $\lim_{x \to 4} f(x)$, (b) $\lim_{x \to 1} f(x)$, (c) f(1) and (d) f(4), (a) $\lim_{x \to 4} f(x) =$

(b) $\lim_{x \to 1} f(x) =$

(c) f(1) =

(d) f(4) =

Use the graph of g to find the following limits and function values. If the limit does not exist, explain why.



Ex.5 (a) $\lim_{x \to 3} g(x)$, (b) $\lim_{x \to 0} g(x)$, (c) $\lim_{x \to -4} g(x)$, d) $\lim_{x \to -3} g(x)$, (e) g(0), (f) g(-3), and (g) g(-4),

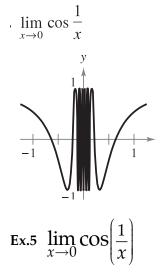
(a)
$$\lim_{x \to 3} g(x) =$$

- (b) $\lim_{x \to 0} g(x) =$
- (c) $\lim_{x \to -4} g(x) =$

(d) $\lim_{x \to -3} g(x) =$

- (e) g(0) =
- (f) g(-3) =
- (g) g(-4) =

Use the graph to find the following limit. If the limit does not exist, explain why.



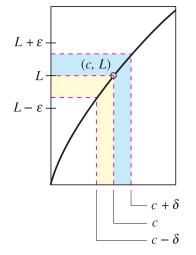
Definition of Limit

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a real number. The statement

$$\lim_{x \to c} f(x) = L$$

means that for each $\varepsilon > 0$ there exists a $\delta > 0$ such that if

$$0 < |x - c| < \delta$$
, then $|f(x) - L| < \varepsilon$.



The ε - δ definition of the limit of f(x) as x approaches c